Copied to
clipboard

G = (C22×C4).F5order 320 = 26·5

1st non-split extension by C22×C4 of F5 acting via F5/C5=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×Dic5)⋊2C8, (C22×C4).1F5, (C22×C20).7C4, C2.1(C23⋊F5), C23.32(C2×F5), C10.6(C22⋊C8), C22.3(D5⋊C8), (C2×C10).5M4(2), C2.7(D10⋊C8), C10.12(C23⋊C4), C22.4(C4.F5), (C2×Dic5).102D4, (C22×Dic5).7C4, C23.2F5.2C2, C10.4(C4.10D4), C22.36(C22⋊F5), C2.2(Dic5.D4), C52(C22.M4(2)), (C22×Dic5).172C22, (C2×C10).8(C2×C8), (C22×C10).43(C2×C4), (C2×C10.D4).1C2, (C2×C10).27(C22⋊C4), SmallGroup(320,252)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C22×C4).F5
C1C5C10C2×C10C2×Dic5C22×Dic5C23.2F5 — (C22×C4).F5
C5C10C2×C10 — (C22×C4).F5
C1C22C23C22×C4

Generators and relations for (C22×C4).F5
 G = < a,b,c,d,e | a2=b2=c4=d5=1, e4=c2, eae-1=ab=ba, ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ece-1=abc, ede-1=d3 >

Subgroups: 306 in 78 conjugacy classes, 28 normal (22 characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, C23, C10, C10, C4⋊C4, C2×C8, C22×C4, C22×C4, Dic5, C20, C2×C10, C2×C10, C22⋊C8, C2×C4⋊C4, C5⋊C8, C2×Dic5, C2×Dic5, C2×C20, C22×C10, C22.M4(2), C10.D4, C2×C5⋊C8, C22×Dic5, C22×C20, C23.2F5, C2×C10.D4, (C22×C4).F5
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C22⋊C4, C2×C8, M4(2), F5, C22⋊C8, C23⋊C4, C4.10D4, C2×F5, C22.M4(2), D5⋊C8, C4.F5, C22⋊F5, D10⋊C8, Dic5.D4, C23⋊F5, (C22×C4).F5

Smallest permutation representation of (C22×C4).F5
On 160 points
Generators in S160
(2 78)(4 80)(6 74)(8 76)(9 68)(11 70)(13 72)(15 66)(17 131)(19 133)(21 135)(23 129)(25 127)(27 121)(29 123)(31 125)(34 81)(36 83)(38 85)(40 87)(41 160)(43 154)(45 156)(47 158)(49 141)(51 143)(53 137)(55 139)(58 95)(60 89)(62 91)(64 93)(97 146)(99 148)(101 150)(103 152)(105 117)(107 119)(109 113)(111 115)
(1 77)(2 78)(3 79)(4 80)(5 73)(6 74)(7 75)(8 76)(9 68)(10 69)(11 70)(12 71)(13 72)(14 65)(15 66)(16 67)(17 131)(18 132)(19 133)(20 134)(21 135)(22 136)(23 129)(24 130)(25 127)(26 128)(27 121)(28 122)(29 123)(30 124)(31 125)(32 126)(33 88)(34 81)(35 82)(36 83)(37 84)(38 85)(39 86)(40 87)(41 160)(42 153)(43 154)(44 155)(45 156)(46 157)(47 158)(48 159)(49 141)(50 142)(51 143)(52 144)(53 137)(54 138)(55 139)(56 140)(57 94)(58 95)(59 96)(60 89)(61 90)(62 91)(63 92)(64 93)(97 146)(98 147)(99 148)(100 149)(101 150)(102 151)(103 152)(104 145)(105 117)(106 118)(107 119)(108 120)(109 113)(110 114)(111 115)(112 116)
(1 71 5 67)(2 13 6 9)(3 14 7 10)(4 66 8 70)(11 80 15 76)(12 73 16 77)(17 51 21 55)(18 52 22 56)(19 137 23 141)(20 138 24 142)(25 43 29 47)(26 44 30 48)(27 156 31 160)(28 157 32 153)(33 94 37 90)(34 58 38 62)(35 59 39 63)(36 89 40 93)(41 121 45 125)(42 122 46 126)(49 133 53 129)(50 134 54 130)(57 84 61 88)(60 87 64 83)(65 75 69 79)(68 78 72 74)(81 95 85 91)(82 96 86 92)(97 111 101 107)(98 112 102 108)(99 117 103 113)(100 118 104 114)(105 152 109 148)(106 145 110 149)(115 150 119 146)(116 151 120 147)(123 158 127 154)(124 159 128 155)(131 143 135 139)(132 144 136 140)
(1 88 140 155 149)(2 156 81 150 141)(3 151 157 142 82)(4 143 152 83 158)(5 84 144 159 145)(6 160 85 146 137)(7 147 153 138 86)(8 139 148 87 154)(9 27 91 115 23)(10 116 28 24 92)(11 17 117 93 29)(12 94 18 30 118)(13 31 95 119 19)(14 120 32 20 96)(15 21 113 89 25)(16 90 22 26 114)(33 56 44 100 77)(34 101 49 78 45)(35 79 102 46 50)(36 47 80 51 103)(37 52 48 104 73)(38 97 53 74 41)(39 75 98 42 54)(40 43 76 55 99)(57 132 124 106 71)(58 107 133 72 125)(59 65 108 126 134)(60 127 66 135 109)(61 136 128 110 67)(62 111 129 68 121)(63 69 112 122 130)(64 123 70 131 105)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (2,78)(4,80)(6,74)(8,76)(9,68)(11,70)(13,72)(15,66)(17,131)(19,133)(21,135)(23,129)(25,127)(27,121)(29,123)(31,125)(34,81)(36,83)(38,85)(40,87)(41,160)(43,154)(45,156)(47,158)(49,141)(51,143)(53,137)(55,139)(58,95)(60,89)(62,91)(64,93)(97,146)(99,148)(101,150)(103,152)(105,117)(107,119)(109,113)(111,115), (1,77)(2,78)(3,79)(4,80)(5,73)(6,74)(7,75)(8,76)(9,68)(10,69)(11,70)(12,71)(13,72)(14,65)(15,66)(16,67)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,129)(24,130)(25,127)(26,128)(27,121)(28,122)(29,123)(30,124)(31,125)(32,126)(33,88)(34,81)(35,82)(36,83)(37,84)(38,85)(39,86)(40,87)(41,160)(42,153)(43,154)(44,155)(45,156)(46,157)(47,158)(48,159)(49,141)(50,142)(51,143)(52,144)(53,137)(54,138)(55,139)(56,140)(57,94)(58,95)(59,96)(60,89)(61,90)(62,91)(63,92)(64,93)(97,146)(98,147)(99,148)(100,149)(101,150)(102,151)(103,152)(104,145)(105,117)(106,118)(107,119)(108,120)(109,113)(110,114)(111,115)(112,116), (1,71,5,67)(2,13,6,9)(3,14,7,10)(4,66,8,70)(11,80,15,76)(12,73,16,77)(17,51,21,55)(18,52,22,56)(19,137,23,141)(20,138,24,142)(25,43,29,47)(26,44,30,48)(27,156,31,160)(28,157,32,153)(33,94,37,90)(34,58,38,62)(35,59,39,63)(36,89,40,93)(41,121,45,125)(42,122,46,126)(49,133,53,129)(50,134,54,130)(57,84,61,88)(60,87,64,83)(65,75,69,79)(68,78,72,74)(81,95,85,91)(82,96,86,92)(97,111,101,107)(98,112,102,108)(99,117,103,113)(100,118,104,114)(105,152,109,148)(106,145,110,149)(115,150,119,146)(116,151,120,147)(123,158,127,154)(124,159,128,155)(131,143,135,139)(132,144,136,140), (1,88,140,155,149)(2,156,81,150,141)(3,151,157,142,82)(4,143,152,83,158)(5,84,144,159,145)(6,160,85,146,137)(7,147,153,138,86)(8,139,148,87,154)(9,27,91,115,23)(10,116,28,24,92)(11,17,117,93,29)(12,94,18,30,118)(13,31,95,119,19)(14,120,32,20,96)(15,21,113,89,25)(16,90,22,26,114)(33,56,44,100,77)(34,101,49,78,45)(35,79,102,46,50)(36,47,80,51,103)(37,52,48,104,73)(38,97,53,74,41)(39,75,98,42,54)(40,43,76,55,99)(57,132,124,106,71)(58,107,133,72,125)(59,65,108,126,134)(60,127,66,135,109)(61,136,128,110,67)(62,111,129,68,121)(63,69,112,122,130)(64,123,70,131,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (2,78)(4,80)(6,74)(8,76)(9,68)(11,70)(13,72)(15,66)(17,131)(19,133)(21,135)(23,129)(25,127)(27,121)(29,123)(31,125)(34,81)(36,83)(38,85)(40,87)(41,160)(43,154)(45,156)(47,158)(49,141)(51,143)(53,137)(55,139)(58,95)(60,89)(62,91)(64,93)(97,146)(99,148)(101,150)(103,152)(105,117)(107,119)(109,113)(111,115), (1,77)(2,78)(3,79)(4,80)(5,73)(6,74)(7,75)(8,76)(9,68)(10,69)(11,70)(12,71)(13,72)(14,65)(15,66)(16,67)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,129)(24,130)(25,127)(26,128)(27,121)(28,122)(29,123)(30,124)(31,125)(32,126)(33,88)(34,81)(35,82)(36,83)(37,84)(38,85)(39,86)(40,87)(41,160)(42,153)(43,154)(44,155)(45,156)(46,157)(47,158)(48,159)(49,141)(50,142)(51,143)(52,144)(53,137)(54,138)(55,139)(56,140)(57,94)(58,95)(59,96)(60,89)(61,90)(62,91)(63,92)(64,93)(97,146)(98,147)(99,148)(100,149)(101,150)(102,151)(103,152)(104,145)(105,117)(106,118)(107,119)(108,120)(109,113)(110,114)(111,115)(112,116), (1,71,5,67)(2,13,6,9)(3,14,7,10)(4,66,8,70)(11,80,15,76)(12,73,16,77)(17,51,21,55)(18,52,22,56)(19,137,23,141)(20,138,24,142)(25,43,29,47)(26,44,30,48)(27,156,31,160)(28,157,32,153)(33,94,37,90)(34,58,38,62)(35,59,39,63)(36,89,40,93)(41,121,45,125)(42,122,46,126)(49,133,53,129)(50,134,54,130)(57,84,61,88)(60,87,64,83)(65,75,69,79)(68,78,72,74)(81,95,85,91)(82,96,86,92)(97,111,101,107)(98,112,102,108)(99,117,103,113)(100,118,104,114)(105,152,109,148)(106,145,110,149)(115,150,119,146)(116,151,120,147)(123,158,127,154)(124,159,128,155)(131,143,135,139)(132,144,136,140), (1,88,140,155,149)(2,156,81,150,141)(3,151,157,142,82)(4,143,152,83,158)(5,84,144,159,145)(6,160,85,146,137)(7,147,153,138,86)(8,139,148,87,154)(9,27,91,115,23)(10,116,28,24,92)(11,17,117,93,29)(12,94,18,30,118)(13,31,95,119,19)(14,120,32,20,96)(15,21,113,89,25)(16,90,22,26,114)(33,56,44,100,77)(34,101,49,78,45)(35,79,102,46,50)(36,47,80,51,103)(37,52,48,104,73)(38,97,53,74,41)(39,75,98,42,54)(40,43,76,55,99)(57,132,124,106,71)(58,107,133,72,125)(59,65,108,126,134)(60,127,66,135,109)(61,136,128,110,67)(62,111,129,68,121)(63,69,112,122,130)(64,123,70,131,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(2,78),(4,80),(6,74),(8,76),(9,68),(11,70),(13,72),(15,66),(17,131),(19,133),(21,135),(23,129),(25,127),(27,121),(29,123),(31,125),(34,81),(36,83),(38,85),(40,87),(41,160),(43,154),(45,156),(47,158),(49,141),(51,143),(53,137),(55,139),(58,95),(60,89),(62,91),(64,93),(97,146),(99,148),(101,150),(103,152),(105,117),(107,119),(109,113),(111,115)], [(1,77),(2,78),(3,79),(4,80),(5,73),(6,74),(7,75),(8,76),(9,68),(10,69),(11,70),(12,71),(13,72),(14,65),(15,66),(16,67),(17,131),(18,132),(19,133),(20,134),(21,135),(22,136),(23,129),(24,130),(25,127),(26,128),(27,121),(28,122),(29,123),(30,124),(31,125),(32,126),(33,88),(34,81),(35,82),(36,83),(37,84),(38,85),(39,86),(40,87),(41,160),(42,153),(43,154),(44,155),(45,156),(46,157),(47,158),(48,159),(49,141),(50,142),(51,143),(52,144),(53,137),(54,138),(55,139),(56,140),(57,94),(58,95),(59,96),(60,89),(61,90),(62,91),(63,92),(64,93),(97,146),(98,147),(99,148),(100,149),(101,150),(102,151),(103,152),(104,145),(105,117),(106,118),(107,119),(108,120),(109,113),(110,114),(111,115),(112,116)], [(1,71,5,67),(2,13,6,9),(3,14,7,10),(4,66,8,70),(11,80,15,76),(12,73,16,77),(17,51,21,55),(18,52,22,56),(19,137,23,141),(20,138,24,142),(25,43,29,47),(26,44,30,48),(27,156,31,160),(28,157,32,153),(33,94,37,90),(34,58,38,62),(35,59,39,63),(36,89,40,93),(41,121,45,125),(42,122,46,126),(49,133,53,129),(50,134,54,130),(57,84,61,88),(60,87,64,83),(65,75,69,79),(68,78,72,74),(81,95,85,91),(82,96,86,92),(97,111,101,107),(98,112,102,108),(99,117,103,113),(100,118,104,114),(105,152,109,148),(106,145,110,149),(115,150,119,146),(116,151,120,147),(123,158,127,154),(124,159,128,155),(131,143,135,139),(132,144,136,140)], [(1,88,140,155,149),(2,156,81,150,141),(3,151,157,142,82),(4,143,152,83,158),(5,84,144,159,145),(6,160,85,146,137),(7,147,153,138,86),(8,139,148,87,154),(9,27,91,115,23),(10,116,28,24,92),(11,17,117,93,29),(12,94,18,30,118),(13,31,95,119,19),(14,120,32,20,96),(15,21,113,89,25),(16,90,22,26,114),(33,56,44,100,77),(34,101,49,78,45),(35,79,102,46,50),(36,47,80,51,103),(37,52,48,104,73),(38,97,53,74,41),(39,75,98,42,54),(40,43,76,55,99),(57,132,124,106,71),(58,107,133,72,125),(59,65,108,126,134),(60,127,66,135,109),(61,136,128,110,67),(62,111,129,68,121),(63,69,112,122,130),(64,123,70,131,105)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])

38 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H 5 8A···8H10A···10G20A···20H
order1222224444444458···810···1020···20
size11112244101010102020420···204···44···4

38 irreducible representations

dim11111122444444444
type++++++-++-
imageC1C2C2C4C4C8D4M4(2)F5C23⋊C4C4.10D4C2×F5D5⋊C8C4.F5C22⋊F5Dic5.D4C23⋊F5
kernel(C22×C4).F5C23.2F5C2×C10.D4C22×Dic5C22×C20C2×Dic5C2×Dic5C2×C10C22×C4C10C10C23C22C22C22C2C2
# reps12122822111122244

Matrix representation of (C22×C4).F5 in GL10(𝔽41)

40000000000
04000000000
0010000000
0001000000
00004000000
00000400000
0000001000
0000000100
0000000010
0000000001
,
1000000000
0100000000
00400000000
00040000000
00004000000
00000400000
0000001000
0000000100
0000000010
0000000001
,
0900000000
9000000000
00320000000
002038000000
00003200000
000020380000
00000040000
00000004000
00000000400
00000000040
,
1000000000
0100000000
0010000000
0001000000
0000100000
0000010000
00000000040
00000010040
00000001040
00000000140
,
03800000000
3000000000
0000100000
0000010000
0001000000
00400000000
000000110424
000000534625
0000007351629
00000017394031

G:=sub<GL(10,GF(41))| [40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[0,9,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,3,20,0,0,0,0,0,0,0,0,20,38,0,0,0,0,0,0,0,0,0,0,3,20,0,0,0,0,0,0,0,0,20,38,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,40,40,40],[0,3,0,0,0,0,0,0,0,0,38,0,0,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,5,7,17,0,0,0,0,0,0,10,34,35,39,0,0,0,0,0,0,4,6,16,40,0,0,0,0,0,0,24,25,29,31] >;

(C22×C4).F5 in GAP, Magma, Sage, TeX

(C_2^2\times C_4).F_5
% in TeX

G:=Group("(C2^2xC4).F5");
// GroupNames label

G:=SmallGroup(320,252);
// by ID

G=gap.SmallGroup(320,252);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,120,387,100,1123,6278,3156]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^5=1,e^4=c^2,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a*b*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽